Role of gas composition in weakened nonlinear standing wave excitation and improved plasma radial uniformity in very-high-frequency asymmetric capacitive Ar/CF4 discharges

Author:

Zhou Fang-JieORCID,Zhang Yu-RuORCID,Zhao KaiORCID,Wen De-QiORCID,Wang You-Nian

Abstract

Abstract The higher harmonics generated by nonlinear sheath motion would enhance the standing wave effect, and thus lead to center-peaked plasma density profile in very-high-frequency (VHF) capacitive discharges. In this work, a nonlinear transmission line (NTL) model introduced in Zhou et al (2021 Plasma Sources Sci. Technol. 30 125017) has been extended, with radial transport of various particles and nonlinear sheath motion into account, to investigate the effects of CF4 fraction α on the nonlinear standing wave excitation and plasma radial uniformity in VHF (60 MHz) capacitively coupled Ar/CF4 plasmas at 3 Pa. The results indicate that for pure Ar discharges (i.e. α = 0%), the nonlinearly excited harmonics with short wavelength significantly enhance the electron power absorption at the radial center, resulting in a pronounced central-high plasma density profile. As α increases, the high-order harmonics are gradually damped due to the increase of resistance, as well as the longer wavelength caused by thicker sheath thickness. Thus, the radial profile of the electron absorbed power density shifts from center-peak to edge-high. Besides, at the radial center, the electron density and Ar+ ion density decrease with α , CF3 + ion density shows an increasing trend, while F ion density initially rises and then decreases. Moreover, the density profiles of all the species become more uniform at higher CF4 fraction, due to the suppressed nonlinear standing wave excitation and the longer wavelength of the nonlinear harmonics.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3