Bidirectional vortex stabilization of a supersonic inductively coupled plasma torch

Author:

Pascale AORCID,Lafleur TORCID,Corr C SORCID

Abstract

Abstract Radio-frequency (RF) inductively coupled plasma (ICP) torches using a supersonic nozzle have many industrial materials processing applications and have also been proposed as novel electrothermal plasma thrusters for space propulsion. The gas injection method in plasma torches plays an important role in both gas heating dynamics and overall discharge stabilization. Here, we investigate reverse vortex gas injection into a supersonic ICP torch for RF powers up to 1 kW, argon mass flow rates between 15 and 180 mg s−1, and plasma torch pressures from ∼270 Pa to ∼50 kPa. In this configuration, gas is injected tangentially just upstream of the nozzle inlet. This produces a bidirectional vortex flow field where gas first spirals upwards along the outer edge of the plasma torch walls, before then reversing direction at the torch end and spiralling back down through the central plasma region towards the nozzle exit. Results are compared to a more conventional forward vortex configuration where gas is instead injected tangentially from the upstream end of the torch, and which forms a unidirectional vortex that spirals towards the downstream nozzle. While performance is similar for gas flows below 80 mg s−1, we show that at higher mass flow rates both the effective torch stagnation temperature and thermal efficiency can be increased by almost 50% with reverse vortex injection. Considering that the measured RF antenna-plasma power transfer efficiency is similar for both configurations, this enhancement occurs because of the unique bidirectional vortex flow field which leads to reduced gas-wall heat losses and consequently an increased enthalpy flow leaving the torch.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference62 articles.

1. Induction-coupled plasma torch;Reed;J. Appl. Phys.,1961

2. Impact of gas heating in inductively coupled plasmas;Hash;J. Appl. Phys.,2001

3. Effect of frequency on local thermodynamic equilibrium conditions in an inductively coupled argon plasma at atmospheric pressure;Mostaghimi;J. Appl. Phys.,1990

4. Thermal plasma processing;Boulos;IEEE Trans. Plasma Sci.,1991

5. Nanopowders synthesis at industrial-scale production using the inductively-coupled plasma technology;Dolbec,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parametric study of a vortex-enhanced supersonic inductive plasma torch;Journal of Physics D: Applied Physics;2024-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3