Oxygen vacancy related hole fast trapping in high mobility cubic-Ge/ZrO2 interface

Author:

Liu Zhu-YouORCID,Cai XuefenORCID,Zhang Cai-Xin,Cao Ru-Yue,Liu Yue-Yang,Deng Hui-XiongORCID

Abstract

Abstract Ge has the potential to replace Si as the future field-effect transistors channel material due to its superior hole mobility, and cubic zirconia with high dielectric constant and small lattice mismatch can be selected as its oxide layer. At present, the mechanism of charge trapping caused by defects in the Ge oxide layer interface and bulk of such device has not been accurately analyzed. In our work, we have constructed the cubic Ge/ZrO2 interface, and studied the electronic structure and hole trapping characteristics of the interface structure by first-principles hybrid-functional calculations with Marcus theory. According to research oxygen vacancies with the different distances (abbr. d O-int) away from the Ge substrate, we confirm that the oxygen vacancy can act as a fast trap center to capture the hole of the valence band maximum (VBM) from Ge, resulting in the ultrafast or fast transient charge trapping in the high-k gate dielectric. We found that, when a given range of applied electric field, the hole trap is ultrafast with capture time of 10−6–10−5 μ s when d O-int is within the range of 2–7 A , and there is a 2–3 order of magnitude increases in capture time as d O-int exceeds 7 A with the maximum capture cross section reducing substantially. Here, our work provides a clear and reasonable description of the distance-dependent hole trapping process at the Ge/high-k dielectrics metal-oxide-semiconductor (MOS) devices and provides significant support for solving the reliability problem of microelectronic devices.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

Key Research Program of the Chinese Academy of Sciences

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3