Abstract
Abstract
Electrolyte-gated organic field-effect transistors (EGOFETs) represent a class of organic thin-film transistors suited for sensing and biosensing in aqueous media, often at physiological conditions. The EGOFET device includes electrodes and an organic semiconductor channel in direct contact with an electrolyte. Upon operation, electric double layers are formed along the gate-electrolyte and the channel-electrolyte interfaces, but ions do not penetrate the channel. This mode of operation allows the EGOFET devices to run at low voltages and at a speed corresponding to the rate of forming electric double layers. Currently, there is a lack of a detailed quantitative model of the EGOFETs that can predict device performance based on geometry and material parameters. In the present paper, for the first time, an EGOFET model is proposed utilizing the Nernst-Planck-Poisson equations to describe, on equal footing, both the polymer and the electrolyte regions of the device configuration. The generated calculations exhibit semi-qualitative agreement with experimentally measured output and transfer curves.
Funder
Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linköping University
Swedish National Infrastructure for Computing (SNIC) at NSC and HPC2N
Vetenskapsrådet
French National Research Agency
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献