Plasmon-induced hot-electron injection effect: mechanism of performance enhancement for ZnO MSM hybrid photodetector by introducing Ag NWs and MXene

Author:

Chu LinglingORCID,Xu Chao,Liu Duanwangde,Nie Chao,Deng Liting

Abstract

Abstract In this paper, a performance-enhanced hybrid ultraviolet metal–semiconductor–metal photodetector (UVPD) has been produced. This device incorporates a mixed photosensitive layer consisting of MXene nanoflakes that are covered on a thin film formed by Ag nanowires (NWs) wrapped in ZnO nanoparticles. This configuration, referred to as ZnO@Ag NWs/Mxene, capitalizes on the hot electrons generated by the localized surface plasmon resonance phenomenon occurring in the Ag NWs and MXene. These hot electrons possess sufficient energy to traverse the interface depletion layer and reach the ZnO layer. Therefore, the injected hot electrons serve as additional photo carriers in the ZnO layer, thereby increasing the number of photo-generated carriers and improving the carrier concentration in ZnO. The improved UVPD device exhibits an amplified photocurrent of ∼2499.35 nA at 5 V, under a light intensity of 6.52 mW cm−2 and a wavelength of 365 nm. Simultaneously, it achieves enhanced performance indices, including an On/Off ratio of ∼984.19, a responsivity (R p) of ∼66.87 mA W−1, and a detectivity (D *) of ∼1.82 × 1011 jones. These values represent a significant improvement compared to devices based solely on the ZnO configuration, with enhancements of ∼24.90, 3.93, 23.38, and 9.33 times, respectively. Based on the obtained results, it can be inferred that employing the hot electron injection effect to design and enhance the performance of optoelectronic devices based on wide band gap semiconductors is a reasonable and effective strategy.

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3