The time evolution of electrical and thermodynamic characteristics of surface dielectric barrier discharge caused by dielectric degradation

Author:

Wang AnORCID,Tian Zunyi,Peng Yang,Wang Haitao,Zhang MengmengORCID,Sun Shuobei,Hou ZhongyuORCID

Abstract

Abstract The degradation of the dielectric layer is a common issue in dielectric barrier discharge (DBD). The performance of DBD devices may suffer from instability due to potential corrosion of the dielectric layer caused by discharge, which could even result in structural failure. To gain a comprehensive understanding of the degradation of DBD devices during discharge, the evolution of the performance of DBD devices with various dielectric materials over time is studied. Periodic patterns are found to form on the dielectric surface along the edge of the high-voltage electrode. The electrical data, emission spectra, and surface morphologies of DBD devices with three different dielectric materials, namely ceramics, glass, and PCB, are obtained during an eight-hour discharge. The electrical and thermodynamic characteristics of DBD devices with the three dielectric materials are found to initially decrease by about 20%∼40%. Subsequently, they remain stable in devices with ceramics and PCB dielectric layers but increase in devices with glass dielectric layers until the end. Surface morphologies reveal that periodic patterns consisting of metal accumulations, etching pits, and metal depositions form on the surfaces of ceramics, glass, and PCBs, respectively. Some organic compounds vaporize from the surface of PCBs. The deposition, etching, and vaporization could be reasons for changes in the electrical and thermodynamic characteristics. It shows that degradation occurs not only in organic dielectrics like polymers but also in inorganic dielectrics such as ceramics and glass. To enhance stability and prevent potential failures and overestimations, electrical and optical measurements could be utilized as diagnostic methods in applications involving DBD devices.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3