Magnetic skyrmions in FePt square-based nanoparticles around room-temperature

Author:

Tyrpenou Christos,Stavrou Vasileios D,Gergidis Leonidas NORCID

Abstract

Abstract Magnetic skyrmions formed at temperatures around room temperature in square-based parallelepiped magnetic FePt nanoparticles with perpendicular magnetocrystalline anisotropy (MCA) were studied during the magnetization reversal process using micromagnetic simulations. Finite differences method were used for the solution of the Landau–Lifshitz–Gilbert equation. Magnetic configurations exhibiting Néel skyrmionic formations were detected. The magnetic skyrmions can be created in different systems by the variation of external field, side length and width of the squared-based parallelepiped magnetic nanoparticles. Micromagnetic configurations revealed a variety of states which include skyrmionic textures with one distinct skyrmion formed and stabilized for a range of external fields around room-temperature. The size of the nucleated Néel skyrmion is calculated as a function of the external field, temperature, MCA and nanoparticle’s geometrical characteristic lengths which can be adjusted to produce skyrmions on demand having diameters down to 12 nm. The micromagnetic simulations revealed that stable skyrmions in the temperature range of 270–330 K can be created for FePt magnetic nanoparticle systems lacking of chiral interactions such as Dzyaloshinskii–Moriya.

Funder

State Scholarships Foundation (IKY) co-financed by Greece and the European Union

Operational Programme ''Competitiveness, Entrepreneurship and Innovation’'

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3