Higher order modal dynamics of the flexural ultrasonic transducer

Author:

Feeney AndrewORCID,Kang Lei,Dixon SteveORCID

Abstract

Abstract The flexural ultrasonic transducer (FUT) consists of a piezoelectric ceramic bonded to an edge-clamped elastic plate, for both generation and detection of ultrasound waves. It is typically employed for proximity measurement, such as in automotive parking systems, and for flow measurement in gases and liquids. Conventional industrial applications have generally incorporated FUTs with resonance frequencies up to around 50 kHz. However, there have been recent advances in the understanding of the FUT, both in terms of fabrication and operation, enabling the potential for measurement in a wider range of applications, including those of elevated pressure, temperature, and requiring multiple operating frequencies. Ultrasound measurement with FUTs at frequencies greater than 50 kHz is desirable in a range of applications, including gas and water metering in petrochemical plants, district heating, and power industries. The major restricting limitation of designing transducers to operate at these higher frequencies has been a relatively poor understanding of these transducers work, including optimisation of design and performance, and the few reports into how different modes of a FUT can be utilised for practical and reliable measurement. In this study, the higher order modal dynamics of the FUT are investigated through measurement of high frequency ultrasound waves in air, for different fundamental operating modes. A combination of experimental techniques is applied, comprising electrical impedance analysis and laser Doppler vibrometry. The experimental research is supported by analytical solutions to reveal complex higher order modal dynamics of the FUT. This investigation represents further development in widening the industrial application potential of the FUT.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3