Physics-informed sparse identification of bistable structures

Author:

Liu QinghuaORCID,Zhao Zhenyang,Zhang YingORCID,Wang Jie,Cao JunyiORCID

Abstract

Abstract The design of bistable structures is a hot topic in the last decade due to its wide application in smart actuators, energy harvesters, flexible robotics, etc. The characterization of the nonlinear restoring force of bistable structures plays a significant role in modeling and enhancing dynamic performance. However, the traditional nonparametric identification methods may have insufficient accuracy or even be invalid because of numerical differentiation procedures and static fitting. Besides, the modern data-driven sparse regression identification methods rely highly on the assumed nonlinear basis functions and lack interpretability. In this paper, a physics-informed sparse identification method is proposed for the nonlinear restoring force identification of bistable structures. The function of the nonlinear restoring force is physically informed by the derived equation of the Hilbert transform and parameter fitting. Furthermore, sparse identification is conducted based on the free vibration responses of the bistable vibrator. The numerical studies verify the effectiveness of the proposed algorithm under the noise level of 30 dB. Experimental measurement is conducted on a magnetic coupled bistable beam to perform the model identification. It has been demonstrated that the reconstructed dynamic response and nonlinear restoring force both keep in good agreement with the measured ones.

Funder

Junyi Cao

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3