Abstract
Abstract
Plasmon-induced transparency (PIT) is theoretically explored for a graphene metamaterial using finite-difference time-domain numerical simulations and coupled-mode-theory theoretical analysis. In this work, the proposed structure consists of one rectangular cavity and three strips to generate the PIT phenomenon. The PIT window can be regulated dynamically by adjusting the Fermi level of the graphene. Importantly, the modulation depth of the amplitude can reach 90.4%. The refractive index sensitivity of the PIT window is also investigated, and the simulation results show that a sensitivity of 1.335 THz RIU−1 is achieved. Additionally, when the polarization angle of the incident light is changed gradually from 0° to 90°, the performance of the structure is greatly affected. Finally, the proposed structure is particularly enlightening for the design of dynamically tuned terahertz devices.
Funder
the National Key R&D Program of China
the Program for Guangdong Introducing Innovative and Enterpreneurial Teams
the National Natural Science Foundation of China
Major Special Projects in Guangdong Province
the Science and Technology Project of Guangzhou
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献