Multifunctional terahertz device based on plasmon-induced transparency

Author:

Lei Pengliang,Nie GuozhengORCID,Li Huilin,Li Zonglin,Peng LiangORCID,Tang Xiaofang,Gao EnduoORCID

Abstract

Abstract Enhancing light-matter interaction is crucial in optics for boosting nanophotonic device performance, which can be achieved via plasmon-induced transparency (PIT). In this study, a polarization-insensitive PIT effect at terahertz frequencies is achieved using a novel metasurface composed of a cross-shaped graphene structure surrounded by four graphene strips. The high symmetry of this metasurface ensures its insensitivity to changes in the polarization angle of incident light. The PIT effect, stemming from the coupling of graphene bright modes, was explored through finite difference time domain (FDTD) simulations and coupled mode theory (CMT) analysis. By tuning the Fermi level in graphene, we effectively modulated the PIT transparent window, achieving high-performance optical switching with a modulation depth (88.9% < MD < 98.0%) and insertion losses (0.17 dB < IL < 0.51 dB) at a carrier mobility of 2 m2/(V·s). Furthermore, the impact of graphene carrier mobility on the slow-light effect was examined, revealing that increasing the carrier mobility from 0.5 m2/(V·s) to 3 m2/(V·s) boosts the group index from 126 to 781. These findings highlight the potential for developing versatile terahertz devices, such as optical switches and slow-light apparatus.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Natural Science Foundation of Guangdong Province

Science and Technology Innovation Program of Hunan Province

Scientific Research Fund of Hunan Provincial Education Department

Scientific Key Research Fund of Guangdong Provincial Education Department

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3