Abstract
Abstract
Recently, black arsenic phosphorus (b-AsP) has become a hot topic of two-dimensional materials research due to its high carrier mobility, tunability of the band gap in a wide range and excellent in-plane anisotropy. In this work, we use first-principle calculations to study the structural and electromagnetic properties of b-AsP with adsorbed nonmetal atoms such as B, C, N, O and F. Taking into account the great difference in the electromagnetic properties induced by adsorption of different kinds of nonmetal atoms on b-AsP, several rectifying device models are formulated. Analysis and calculations demonstrate that the device, consisting of an N atom adsorbed on b-AsP, has a rectification ratio of 105 and a negative differential resistance. According to our results, N-doped b-AsP can be used as a two-dimensional molecular rectifier and spin filter.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
Hubei Province Key Laboratory of Systems Science in Metallurgical Proces
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献