Passivated indium oxide thin-film transistors with high field-effect mobility (128.3 cm2 V−1 s−1) and low thermal budget (200 °C)

Author:

Xiao NaORCID,Khandelwal Vishal,Yuvaraja SaravananORCID,Chettri DhanuORCID,Mainali GeneshORCID,Liu Zhiyuan,Hassine Mohamed Ben,Tang XiaoORCID,Li XiaohangORCID

Abstract

Abstract Here, we demonstrate a high-mobility indium oxide (In2O3) thin-film transistor (TFT) with a sputtered alumina (Al2O3) passivation layer (PVL) with a low thermal budget (200 °C). The sputtering process of the Al2O3 PVL plays a positive role in improving the field-effect mobility (µ FE) and current on/off ratio (I ON/I OFF) performance of the In2O3 TFTs. However, these enhancements are limited due to the high density of intrinsic trap defects in the In2O3 channels, as reflected in their large hysteresis and poor bias stability. Treating the In2O3 channel with oxygen (O2) plasma prior to sputtering the Al2O3 PVL results in notable improvements. Specifically, a high µ FE of 128.3 cm2V−1 s−1, a high I ON/I OFF over 106 at V DS of 0.1 V, a small hysteresis of 0.03 V, and a negligible threshold voltage shift under negative bias stress are achieved in the passivated In2O3 TFT (with O2 plasma pretreatment), representing a significant improvement compared to the passivated In2O3 TFT (without O2 plasma pretreatment) and the unpassivated In2O3 TFT. The remarkable reduction of intrinsic trap defects in the passivated In2O3 TFT compensated by O2 plasma is the primary mechanism underlying the improvement in µ FE and bias stability, as validated by x-ray photoelectron spectra, hysteresis analysis, and temperature-stress electrical characterizations. Plasma treatment effectively compensates for intrinsic trap defects in oxide semiconductor (OS) channels, when combined with sputter passivation, resulting in a significant enhancement of the overall performance of OS TFTs under low thermal budgets. This approach offers valuable insights into advancing OS TFTs with satisfactory driving capability and wide applicability.

Funder

KAUST

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3