Crystalline texture of cobalt nanowire arrays probed by the switching field distribution and FORC diagrams

Author:

Lobo Guerrero A,Encinas AORCID,Araujo E,Piraux LORCID,de la Torre Medina JORCID

Abstract

Abstract The crystalline texture of arrays of low diameter Co nanowires (NWs) synthesized by electrodeposition using electrolytes with different acidities (pH in the range 2.0–6.6) was studied by the switching field distribution (SFD) and first order reversal curve (FORC) diagrams. Particularly, the SFD determined as the derivative d M / d H of the descending part of the major hysteresis loop has proven to be a reliable and powerful method for the identification of different crystalline textures in the NWs and the quantification of their corresponding texture percentages. The presence of the face centered cubic-like texture at low pH values and hexagonal close packed textures with the c-axis perpendicular and parallel to the NWs axis at higher pH values have been identified by performing multiple Gaussian fits to the SFD by virtue of their different magnetic behavior observed during reversal of the magnetization. The field position and size of each curve in the multiple Gaussian fit provide information about the corresponding magnetic contribution and volumetric texture percentage of each crystalline texture in the NWs, respectively. The analysis of the SFD has been complemented and validated with FORC diagram measurements, showing that the width of the coercive field distribution is in good agreement with the width of the SFD. Also, it has been found that the different branches observed in the FORC diagrams along the interaction axis provide further insight on the interaction between magnetocrystalline fields. This work provides a novel methodology for the use of magnetometry as a reliable technique for the study of the interplay between the microstructure and magnetic behavior of arrays of NWs.

Funder

Wallonia/Brussels Community

Consejo Nacional de Ciencia y Tecnología

Fonds De La Recherche Scientifique - FNRS

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3