Abstract
Abstract
A novel approach for a non-volatile destructive readout memory application using bistable magnetic nanowire arrays is presented. The encoded information is stored as binary 1 and 0 by groups of NWs magnetized in the positive and negative states, respectively. We leverage the naturally occurring switching field distribution of the NW array and a tailored alternating decreasing magnetic field to program remanent magnetic states. To retrieve the information, the measured remagnetization curve exhibits a star-like behavior with jumps and plateaus and its derivative converts this information to a binary-type format. Two encoding and readout schemes are proposed and validated: binary bits and barcodes. For each case, the implementation and optimization procedures are illustrated, along with the required processing to obtain a useful readout signal. This strategy holds potential for non-volatile memory applications in which the stored information is erased during reading and can be reused indefinitely.
Graphical abstract
Funder
Consejo Nacional de Ciencia y Tecnología
Fonds De La Recherche Scientifique - FNRS
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献