High-efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies

Author:

Fan Junpeng,Cheng YongzhiORCID,He Bin

Abstract

Abstract It has been demonstrated that metasurfaces have the ability to manipulate the wavefront. However, most multifunctional metasurfaces reported to date only operate in either reflection or transmission mode. In this paper, a bilayer metasurface based on geometric phase is proposed to independently tailor the wavefronts of transmitted and reflected circularly polarized (CP) waves at two different terahertz frequencies. More specifically, the metasurface can transform the incident CP wave to its cross-polarization component with a high conversion coefficient of about 0.87 (0.92) after refraction (reflection) at 0.6 (1.67) THz. The full 2π phase shift can be obtained independently by varying the geometrical parameters of the unit-cell structure at two different operation modes. As proofs of concept, anomalous refraction and reflection, dual-band full-space cylindrical focusing metalens and vortex beam generation with different modes are numerically demonstrated. Our work provides an effective method to integrate two or more different functionalities into a simple metasurface-based device, and the independent phase modulation characteristic of our proposed metasurface also shows infinite potential in wavefront control of full space.

Funder

Graduate Innovation Foundation of Wuhan University of Science and Technology

the Science and Technology Research Project of Education Department of Hubei China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3