Broadband vortex beam generation by a reflective meta-surface based on a metal double-slit resonant ring

Author:

Yuan Xufeng,Zhao Chaoying1ORCID

Affiliation:

1. Shanxi University

Abstract

Recently, the meta-surface (MS) has emerged as a promising alternative method for generating vortex waves. At the same time, MS also faces the problem of a narrow bandwidth; in order to obtain a broad bandwidth, the MS unit cell structure becomes more and more complex, which will bring many inconveniences to the preparation process of MS devices. Therefore, we want to design a simple MS unit cell with a multi-frequency selection. In this paper, based on the principle of geometric phase, we design a simple reflective MS unit cell based on a metal double-slit resonant ring. We elaborate on the resonance mechanism of the MS unit cell. Under the normal incidence of circularly polarized (CP) waves, the reflection coefficient of the same polarization was greater than 85%. By rotating the orientation angle of the resonator on the MS unit cell, the continuous 2π phase coverage was satisfied in the frequency range of 0.52–1.1 THz, and the relative bandwidth becomes 71.6%. Based on this, we construct a vortex generator by using a 15×15 MS unit array. The right-handed circularly polarized (RCP) waves and left-handed circularly polarized (LCP) wave are separately incident on MS with topological charges of l=+1,+2,+3 under multiple resonant frequencies. The generated RCP vortex wave has topological charges of l=−1,−2,−3 and the generated LCP vortex wave has topological charges of l=+1,+2,+3. The numerical simulation results demonstrate that our designed MS, capable of achieving multiple resonance outcomes, can effectively operate in a multi-broadband mode and produce a wide-band vortex beam. In addition, we also calculate the pattern purity. Through theoretical analysis and numerical simulation, we prove that our designed MS can generate a broadband vortex wave.

Funder

State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Shanxi, China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3