A bistable rotary-translational energy harvester from ultra-low-frequency motions for self-powered wireless sensing

Author:

Masabi Sayed N,Fu HailingORCID,Theodossiades Stephanos

Abstract

Abstract This paper presents the design, theoretical modelling and experimental study of a bi-stable energy harvester (EH) using rotary-translation motion for ultra-low frequency and low excitation amplitude energy sources. A spherical magnet is adopted to produce the rotary-translational motion to convert ultralow-frequency kinetic energy into electricity over a wide frequency range. The bi-stable mechanism is realized by introducing two tethering magnets underneath the sphere magnet’s oscillating path, significantly enhancing the operating range of the harvester. A theoretical model including the impact dynamics, magnetic interaction and electromagnetic conversion has been established to explore the electromechanical behaviours of the harvester under different operating conditions. The results illustrate that the EH operates in intra-well or inter-well motion depending on whether the input excitation is adequate to conquer the potential barrier depth. A prototype is developed to illustrate the design and to validate the theoretical model. The prototype generates sufficient power (mW) at frequencies lower than 2 Hz with excitation amplitudes as low as 0.1 g. A peak output power of 9 mW (1.53 mW RMS) is obtained at 2 Hz and 0.7 g with 750 Ω external load. The developed EH is integrated with an off-the-shelf power management solution to power a wireless sensing system to successfully record real-time temperature variation in the environment.

Funder

Royal Society

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference54 articles.

1. Wireless sensors networks for internet of things;Khalil,2014

2. An Event-Triggered Energy-Efficient Wireless Structural Health Monitoring System for Impact Detection in Composite Airframes

3. Wireless sensor networks (WSNs);Pinar,2016

4. Continuous sensing on intermittent power;Majid,2020

5. Software defined wireless sensor networks: a review;Duan,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3