A multi-stable rotational energy harvester for arbitrary bi-directional horizontal excitation at ultra-low frequencies for self-powered sensing

Author:

Masabi Sayed NORCID,Fu HailingORCID,Flint James,Theodossiades StephanosORCID

Abstract

Abstract A rotational multi-stable energy harvester has been presented in this paper for harnessing broadband ultra-low frequency vibrations. The novel design adopts a toroidal-shaped housing to contain a rolling sphere magnet which absorbs mechanical energy from bidirectional base excitations and performs continuous rotational movement to transfer the energy using electromagnetic transduction. Eight alternating tethering magnets are placed underneath its rolling path to induce multi-stable nonlinearity in the system, to capture low-frequency broadband vibrations. Electromagnetic transduction mechanism has been employed by mounting eight series connected coils aligned with the stable regions in the rolling path of the sphere magnet, aiming to achieve greater power generation due to optimized rate of change of magnetic flux. A theoretical model has been established to explore the multi-stable dynamics under varying low-frequency excitation up to 5 Hz and 3 g acceleration amplitudes. An experimental prototype has been fabricated and tested under low frequency excitation conditions. The harvester is capable of operating in intra-well, cross-well, and continuous rotation mode depending on the input excitation, and the validated physical device can generate a peak power of 5.78 mW with 1.4 Hz and 0.8 g sinusoidal base excitation when connected to a 405 Ω external load. The physical prototype is also employed as a part of a self-powered sensing node and it can power a temperature sensor to get readings every 13 s on average from human motion, successfully demonstrating its effectiveness in practical wireless sensing applications.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3