Recent progress in bioactive gas delivery for cancer immunotherapy

Author:

Liu Yang,Chen Tiandong,Gu NingORCID,Yang FangORCID

Abstract

Abstract Tumors with high mortality rates are still a major threat to human survival and health worldwide. In recent years, cancer immunotherapy has made rapid clinical progress in eliminating cancers by activating the host’s own immune system. Particularly, the use of physiological bioactive gas molecules such as nitric oxide, carbon monoxide and hydrogen sulfide have been developed as novel immunotherapeutic strategies. In this review, we have summarized the current strategies for antitumor immunotherapy via bioactive gas molecules, targeting delivery to the tumor microenvironment. We summarize the biofunctions of bioactive gases to the immune system, then gas delivery nanocarriers for antitumor immunotherapy and the current status of the platform are presented. Furthermore, since gas could specifically respond to the ultrasound, ultrasound-assisted gas delivery is generalized as a promising potential pathway for enhanced immunotherapy. Finally, we have discussed the challenges and opportunities for bioactive gas delivery and the effects of acoustic enhanced immunotherapy in future developments and possible clinical applications.

Funder

Research and Development Program of China

National Natural Science Foundation of China

National Natural Science Foundation of Jiangsu

Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3