Enhancing robotic manipulator fault detection with advanced machine learning techniques

Author:

Khan Faiq AhmadORCID,Jamil AkhtarORCID,Khan Shaiq Ahmad,Hameed Alaa AliORCID

Abstract

Abstract The optimization of rotating machinery processes is crucial for enhanced industrial productivity. Automatic machine health monitoring systems play a vital role in ensuring smooth operations. This study introduces a novel approach for fault diagnosis in robotic manipulators through motor sound analysis to enhance industrial efficiency and prevent machinery downtime. A unique dataset is generated using a custom robotic manipulator to examine the effectiveness of both deep learning and traditional machine learning in identifying motor anomalies. The investigation includes a two-stage analysis, initially leveraging 2D spectrogram features with neural network architectures, followed by an evaluation of 1D MFCC features using various conventional machine learning algorithms. The results reveal that the proposed custom CNN and 1D-CNN models significantly surpass traditional methods, achieving an F1-score exceeding 92%, highlighting the potential of sound analysis for automated fault detection in robotic systems. Additional experiments were carried out to investigate 1D MFCC features with various machine learning algorithms, including KNN, DT, LR, RF, SVM, MLP, and 1D-CNN. Augmented with additional data collected from the locally designed manipulator, our experimental setup significantly enhances model performance. Particularly, the 1D-CNN stands out as the top-performing model on the augmented dataset.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3