Abstract
Abstract
Gravitational forces that oscillate at audio-band frequencies are measured with masses suspended as pendulums that have resonance frequencies even lower. If the pendulum is excited by thermal energy or by seismic motion of the environment, the measurement sensitivity is reduced. Conventionally, this problem is mitigated by seismic isolation, potentially combined with cryogenic cooling. Here, we propose mechanical parametric cooling of the pendulum motion, continuously even during the measurements. Different from linear damping, the actuator of our approach does not need a mechanically stable reference point. We report a proof of principle demonstration in the seismic noise dominated regime and achieve a damping factor of the pendulum motion of 5.7. We find a model system for which mechanical parametric feedback cooling reaches the quantum mechanical regime near the ground state. Gravitational-wave detectors would already be improved with much lower cooling factors.
Funder
Deutsche Forschungsgemeinschaft
H2020 European Research Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献