Abstract
Abstract
The existence of periodic impacts in collected vibration signal is the representative symptom of rolling bearing localized defect. Due to the complicacy of the working condition, the fault-related impacts are usually submerged in other ingredients. This article proposes an adaptive Resonance-based Sparse Signal Decomposition (RSSD) for extracting the fault features of rolling bearings. Adaptive RSSD is constructed to fetch the impacts from collected vibration signal, by making RSSD decomposed signal kurtosis value maximum using Lion Swarm Algorithm (LSA). Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is further performed to enhance the amplitude and periodicity of impacts contained in RSSD decomposed signal, so that fault feature is highlighted. The superiority and availability of proposed strategy are validated by applying to single fault feature extraction of an experimental dataset and compound faults feature extraction of a locomotive rolling bearing.
Funder
National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献