A new method of health condition detection for hydraulic pump using enhanced whale optimization-resonance-based sparse signal decomposition and modified hierarchical amplitude-aware permutation entropy

Author:

Zhou Fuming1,Liu Wuqiang1,Yang Xiaoqiang1,Shen Jinxing1ORCID,Gong Peiping2

Affiliation:

1. Field Engineering College, Army Engineering University of PLA, China

2. Training Base, Army Engineering University of PLA, China

Abstract

The normal operation of the hydraulic pump is the significant premise for the stable and dependable working of hydraulic equipment. Consequently, this research comes up with a health condition detection method of hydraulic pump. First of all, this approach selects resonance-based sparse signal decomposition (RSDD) to adaptively disintegrate vibration signals. The biggest problem of the RSDD algorithm is the requirement to artificially set a large number of key parameters, such as quality factor Q, weight coefficient A, and Lagrange operator u. The improper parameter settings will seriously affect the decomposition performance. To overcome this shortcoming, an enhanced whale optimization algorithm is presented to search the best parameter combination of the RSDD. The algorithm takes the correlation kurtosis as the optimization objective function to adaptively disintegrate the signal into low and high resonance components. Moreover, on the basis of the modified analytic hierarchy process and the amplitude-aware permutation entropy, the modified hierarchical amplitude-aware permutation entropy is raised for measuring the complexity of the measured time series more accurately and comprehensively. After that, a health condition detection method for hydraulic pump based on enhanced whale optimization-resonance-based sparse signal decomposition and modified hierarchical amplitude-aware permutation entropy is raised. Finally, through the usage of the hydraulic pump vibration data, this method is compared with other approaches. According to the experimental results, the raised method can identify the fault type more effectively, which is capable of offering a feasible idea for the health condition detection of hydraulic equipment.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3