Convolutional neural network and impedance-based SHM applied to damage detection

Author:

de Rezende Stanley Washington FerreiraORCID,de Moura José dos Reis VieiraORCID,Neto Roberto Mendes Finzi,Gallo Carlos Alberto,Steffen Valder

Abstract

Abstract The impedance-based structural health monitoring technique uses measured signatures changes to identify incipient damages in structures. The purpose is to perform a correlation of these changes with the physical phenomena. However, since electromechanical coupling exists, some environmental influences such as temperature changes may lead to false decision regarding the condition of the structure. As a result, innovative machine learning tools have been extensively investigated to avoid errors in structural prognosis and, in this sense, recent applications of convolutional neural networks (CNN) have emerged within the scope of SHM research, focusing mainly on vibration analysis. However, studies that aim to combine neural architectures with intelligent materials for structural monitoring purposes have been poorly evaluated. Consequently, its integration with the electromechanical impedance method is still considered as being a new application of CNN. Thus, in order to contribute to the SHM area, this work presents a combination of the CNN architecture and the EMI methodology. In the present contribution, three aluminum beams subjected to three different steady temperature levels (0 °C, 10 °C and 20 °C) were studied. For this aim, a test chamber was used for humidity and temperature control. Artificial damages such as mass addition were taken into account so that impedance signatures related to both pristine and damaged conditions can be analyzed. Thus, a one-dimensional Convolutional Neural Network (1D CNN) was designed, trained and used for damage prediction purposes. In this context, a temperature robust model that is able to identify damage independently of environmental condition was developed.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

IOP Publishing

Subject

General Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3