Abstract
Abstract
For measurements of unsteady flow phenomena with multi-hole pressure probes, pressure transducers are integrated in the probe near the probe tip. The application of additive manufacturing enables a wide variation in probe geometries for complex use cases. The spatial characteristics of the unsteady probe are determined by the steady state calibration in a known free-jet wind tunnel. Furthermore, the acoustic/pneumatic line-cavity system, that emerges inside the channels of the probe, is investigated in detail in the temporal calibration. In order to realize multi-hole probes with higher temporal resolution, which can be operated in harsh environments, a fiber-optic pressure sensor is developed. The measurement principle of the fiber-optic sensor is based on the Fabry-Pérot interferometer effect. The sensor is operated differentially with a pressure capillary by either pressurizing the sensor or using the surrounding static pressure as the reference pressure. Besides calibration of the sensor, comparisons with a state-of-the-art piezo-resistive pressure transducer have been performed. The focus of this work is on the reproducibility of both frequency response and amplitude.
Funder
Bundesministerium für Wirtschaft und Energie
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献