Effect of sand mining on the flow hydrodynamics around an oblong bridge pier

Author:

Lade Abhijit DORCID,Taye JyotismitaORCID,Kumar BimleshORCID

Abstract

Abstract Extraction of sand from riverbed has catastrophic repercussions on aquatic animalia habitat, water quality, and the environment. Alongside, physical alterations in the fluvial hydraulics arising on account of sand mining are also worthy of attention. Flows passing over the pits excavated in a channel have enhanced erosive propensity, which can be a cause of concern for the downstream hydraulic structures. The complex nature of flow interacting with the bridge piers after passing over a mining pit is not fully understood. Experiments were conducted to apprehend the effects of a dredged pit on the turbulence flow-field around an oblong pier. Flow was passed in an erodible sand bed rectangular channel having an oblong pier for the first case. In the second case, a pit was dredged in the mobile bed to replicate a mined channel, and the pier was subjected to the same discharge. The streambed at the approach of the pier experiences greater mean bed shear because of dredging. The amplification of the instantaneous bed shear beneath the turbulent horseshoe vortex (THSV) zone at the pier front is almost twice due to channel dredging. The findings can be useful in understanding the streambed instabilities around bridge piers in mining-infested channels.

Publisher

IOP Publishing

Subject

General Engineering

Reference29 articles.

1. Permutation entropy: a natural complexity measure for time series;Bandt;Phys. Rev. Lett.,2002

2. Experimental study on mining pit migration;Barman,2017

3. Turbulent flow structures and geomorphic characteristics of a mining affected alluvial channel;Barman;Earth Surf. Processes Landforms,2018

4. On the morphological impacts of gravel mining: the case of the Orco River;Brestolani,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3