Affiliation:
1. Department of Civil Engineering Indian Institute of Technology Guwahati (IITG) Guwahati India
2. Department of Civil Engineering Visvesvaraya National Institute of Technology (VNIT) Nagpur India
Abstract
AbstractRiverbank erosion has significant geomorphological as well as anthropogenic consequences. The geomorphological impacts include form changes such as lateral channel migration, meanders, channel expansion, etc. The anthropogenic effects include the threat to floodplain human habitation, agricultural land, and stability of instream hydraulic structures and buried pipelines. Channel dredging for the extraction of sand and gravel has seen a multi‐fold rise in the last few decades. Therefore, riverbank erosion response to channel mining gains importance in river basin management. Sandpits dredged in the riverbeds can significantly impact the downstream riverbank stability. In order to assess these impacts, we conducted a series of experiments at a laboratory scale in a recirculating water flume. Three riverbank slopes, 25° (gentle), 31° (equal to the angle of repose of the bank sediments), and 40° (steeper than the angle of repose), were tested along with a sandpit. Remarkable changes in the turbulence structure of riverbank flow were found due to the channel pit. Pit excavation directly impacts the fluvial erosion characteristics of the riverbank. Pit action increases the Reynolds shear stress fields in the near‐bank flow, which causes progressive fluvial erosion of the berm at the bank toe. The erosivity of the main channel flow in the riverbank also leads to channel degradation, which increases the exposed height of the bank slope. Pit dredging leads to the generation of stronger ejection bursts which provide a mechanism for berm sediment mobility and erosion. The hydro morphological response of the riverbank due to sand mining was analysed, and process understandings are presented in the paper.
Funder
Indian Institute of Technology Guwahati
Subject
General Environmental Science,Water Science and Technology,Environmental Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献