Study of local anodic oxidation regimes in MoSe2

Author:

Borodin Bogdan RORCID,Benimetskiy Fedor A,Alekseev Prokhor AORCID

Abstract

Abstract Scanning probe microscopy is widely known not only as a well-established research method but also as a set of techniques enabling precise surface modification. One such technique is local anodic oxidation (LAO). In this study, we investigate the LAO of MoSe2 transferred on an Au/Si substrate, focusing specifically on the dependence of the height and diameter of oxidized dots on the applied voltage and time of exposure at various humidities. Depending on the humidity, two different oxidation regimes were identified. The first, at a relative humidity (RH) of 60%–65%, leads to in-plane isotropic oxidation. For this regime, we analyze the dependence of the size of oxidized dots on the oxidation parameters and modify the classical equation of oxidation kinetics to account for the properties of MoSe2 and its oxide. In this regime, patterns with a maximum spatial resolution of 10 nm were formed on the MoSe2 surface. The second is the in-plane anisotropic oxidation regime that arises at a RH of 40%–50%. In this regime, oxidation leads to the formation of triangles oxidized inside the zigzag edges. Based on the mutual orientation of zigzag and armchair directions in successive oxidized layers, the stacking type and phase of MoSe2 flakes were determined. These results allow LAO to be considered not only as an ultra-high-resolution nanolithography method, but also as a method for investigating the crystal structure of materials with strong intrinsic anisotropy, such as transition metal dichalcogenides.

Funder

Ministry of Science and Higher Education of Russian Federation, Megagrant

Ministry of Science and Higher Education of Russian Federation, goszadanie

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3