Metallic spherical heterotrimer systems for plasmonic-based improvement in hyper-Raman scattering

Author:

Alsawafta MohammedORCID

Abstract

Abstract A unique combination between structural parameters of collinearly arranged spherical particles is proposed as an effective plasmonic substrate for ultrahigh enhancement in hyper-Raman scattering signals. The suggested spherical trimer systems are mainly composed from two identical nanoparticle separated by a third alike shape resonator of different size. All the interacting plasmonic element are made from gold, arranged in 1D array and illuminated by a longitudinally polarized light. The optical properties, spatial distribution of nearfields and the surface charge densities were calculated numerically by FDTD tool. The enhancement factor of the hyper-Raman scattering, and the associated Raman shift were calculated theoretically from the optical response of the trimer. The extinction spectra of the heterotrimers demonstrate the excitation of two plasmonic modes, the first coupled band excited at a longer wavelength and is attributed to the in-phase coupling between the dipole moments induced in each of the three spherical resonators, the other hybrid mode observed in the shorter wavelength region and is resulted from the coupling between the dark mode excited in the intermediate particle and the bright band monitored in the bordered particles. The nearfields associated with the excitation of the two plasmonic modes are strongly localized and highly enhanced at the same intercoupling regions (hot spots) which optically match the excitation wavelength and the second-order stock condition. Through careful selecting of the relative size of the coupled nanoparticles and their coupling separation, the enhancement factor of hyper-Raman scattering signal can reach as high as 1 × 1013.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3