Plasmonic Modes and Optical Properties of Gold and Silver Ellipsoidal Nanoparticles by the Discrete Dipole Approximation

Author:

Alsawafta Mohammed1,Wahbeh Mamoun1,Truong Vo-Van1

Affiliation:

1. Department of Physics, Concordia University, Montréal, QC, Canada H4B 1R6

Abstract

The discrete dipole approximation (DDA) is used to model the absorption efficiency of isolated gold (Au) and silver (Ag) ellipsoidal nanoparticles. The characteristics of the plasmonic bands of those nanostructures depend strongly on the size and orientation of the particles in both the lab and target frames. At specific rotation and incident angles, the desired plasmonic mode can be excited. The result of the simulation shows the possibility of excitation of three plasmonic modes—one longitudinal mode (LM) and two transverse modes (TM)—corresponding to the redistribution of the polarization charges along each principal axis. At oblique incidence of the incoming light, both the Au LM and a hybrid Au TM are observed whereas three more distinct plasmonic modes can be found in the case of the Ag particle. The effect of length distribution on the characteristics of the plasmonic bands is also examined for the three principal axes. The band position of the plasmonic bands associated with the electronic oscillation along each principal axis is found to vary linearly with the axis length. The linear variation of the band position of the LM is steeper as compared with the one found for the other modes.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3