Patterning optimization for device realization of patterned GaAsSbN nanowire photodetectors

Author:

Johnson SeanORCID,Pokharel RabinORCID,Lowe Michael,Dawkins KendallORCID,Li Jia,Iyer ShanthiORCID

Abstract

Abstract Vertically grown nanowires (NWs) are a research interest in optoelectronics and photovoltaic applications due to their high surface to volume ratio and good light trapping capabilities. This study presents the effects of process and design parameters on self-catalyzed GaAsSbN NWs grown by plasma-assisted molecular beam epitaxy on patterned silicon substrates using electron beam lithography. Vertical alignment of the patterned NWs examined via scanning electron microscopy show the sensitivity of patterned NW growth to the parameters of NW diameter, pitch, dose time, etching techniques and growth plan. Diameters range from 90 nm to 250 nm. Pitch lengths of 200 nm, 400 nm, 600 nm, 800 nm, 1000 nm, and 1200 nm were examined. Dry etching of the oxide layer of the silicon substrate and PMMA coating is performed using reactive ion etching (RIE) for 20 s and 120 s respectively. Comparisons of different HF etch durations performed pre and post PMMA removal are presented. Additionally, the report of an observed surfactant effect in dilute nitride GaAsSbN NWs in comparison to non-nitride GaAsSb is presented. Optimizations to patterning, RIE, and HF etching are presented to obtain higher vertical yield of patterned GaAsSbN NWs, achieving ∼80% of the expected NW µm2. Room temperature and 4 K photoluminescence results show the effect of nitride incorporation for further bandgap tuning, and patterned pitch on the optical characteristics of the NWs which gives insights to the compositional homogeneity for NWs grown at each pitch length.

Funder

Office of Naval Research

Directorate for Engineering

Publisher

IOP Publishing

Reference33 articles.

1. Maskless electron beam lithography: prospects, progress, and challenges;Groves;Microelectron. Eng.,2002

2. Fundamentals of electron beam exposure and development;Mohammad,2012

3. Promising lithography techniques for next-generation logic devices;Hasan;Nanomanuf. Metrol.,2018

4. Fabrication of micro-array of Fresnel rings on Si by electron beam lithography and reactive ion etching;Chiromawa;Appl. Phys. A,2016

5. Simulation of electron beam lithography of nanostructures;Stepanova;J. Vac. Sci. Technol. B,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3