Insight into the stacking and the species-ordering dependences of interlayer bonding in SiC/GeC polar heterostructures

Author:

Tasnim Kazi Jannatul,Alharbi Safia Abdullah R,Musa Md Rajib Khan,Lovell Simon Hosch,Akridge Zachary Alexander,Yu MingORCID

Abstract

Abstract Two-dimensional (2D) polar materials experience an in-plane charge transfer between different elements due to their electron negativities. When they form vertical heterostructures, the electrostatic force triggered by such charge transfer plays an important role in the interlayer bonding beyond van der Waals (vdW) interaction. Our comprehensive first principle study on the structural stability of the 2D SiC/GeC hybrid bilayer heterostructure has found that the electrostatic interlayer interaction can induce the ππ orbital hybridization between adjacent layers under different stacking and out-of-plane species ordering, with strong hybridization in the cases of Si–C and C–Ge species orderings but weak hybridization in the case of the C–C ordering. In particular, the attractive electrostatic interlayer interaction in the cases of Si–C and C–Ge species orderings mainly controls the equilibrium interlayer distance and the vdW interaction makes the system attain a lower binding energy. On the contrary, the vdW interaction mostly controls the equilibrium interlayer distance in the case of the C–C species ordering and the repulsive electrostatic interlayer force has less effect. Interesting finding is that the band structure of the SiC/GeC hybrid bilayer is sensitive to the layer-layer stacking and the out-of-plane species ordering. An indirect band gap of 2.76 eV (or 2.48 eV) was found under the AA stacking with Si–C ordering (or under the AB stacking with C–C ordering). While a direct band gap of 2.00–2.88 eV was found under other stacking and species orderings, demonstrating its band gap tunable feature. Furthermore, there is a charge redistribution in the interfacial region leading to a built-in electric field. Such field will separate the photo-generated charge carriers in different layers and is expected to reduce the probability of carrier recombination, and eventually give rise to the electron tunneling between layers.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3