The first-principles study of structural and electronic properties of two-dimensional SiC/GeC lateral polar heterostructures

Author:

Alharbi Safia Abdullah R.12,Tasnim Kazi Jannatul1,Yu Ming1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky 40292, USA

2. Department of Physics, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11623, Saudi Arabia

Abstract

Two-dimensional (2D) lateral polar heterostructures, constructed by seamlessly stitching 2D polar materials, exhibit unique properties triggered by the in-plane charge transfer between different elements in each domain. Our first-principles study of 2D SiC/GeC lateral polar heterostructures has unraveled their interesting characteristics. The local strain induced by a lattice mismatch leads to an artificial uniaxial strain along the interface. The synergistic effect of such uniaxial strain, the microstructure of interface, and the width of domains modulates the feature of the bandgap with an indirect bandgap nature in armchair lateral heterostructures and a direct bandgap nature in zigzag lateral heterostructures. The bandgap monotonically decreases with increasing the width of domains, showing its tunability. Furthermore, the valence band maximum is found to be mainly contributed from C-2 p orbitals located at both GeC and SiC domains, and the conduction band minimum is mainly contributed from Ge-4 p orbitals located at the GeC domain, implying that most excited electrons prefer to stay at the GeC domain of the SiC/GeC lateral polar heterostructures. Interestingly, a net charge transfer from the SiC domain to the GeC domain was found, resulting in a spontaneous lateral p–n junction, and there is a net charge redistribution at the interfacial region leading to a built-in electric field which is expected to reduce the carrier recombination losses, implying the promising application for visible light photocatalyst, photovoltaics, and water splitting to achieve clean and renewable energy.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3