Abstract
Abstract
Metal nanowires are attractive building blocks for next-generation plasmonic devices with high performance and compact footprint. The complex reflection coefficients of the plasmonic waveguides are crucial for estimation of the resonating, lasing, or sensing performance. By incorporating physics-guided objective functions and constraints, we propose a simple approach to convert the specific reflection problem of nanowires to a universal regression problem. Our approach is able to efficiently and reliably determine both the reflectivity and reflection phase of the metal nanowires with arbitrary geometry parameters, working environments, and terminal shapes, merging the merits of the physics-based modeling and the data-driven modeling. The results may provide valuable reference for building comprehensive datasets of plasmonic architectures, facilitating theoretical investigations and large-scale designs of nanophotonic components and devices.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Innovation Support Plan for Returned Overseas Students
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献