Transfer Learning for Modeling Plasmonic Nanowire Waveguides

Author:

Luo Aoning,Feng Yuanjia,Zhu Chunyan,Wang YipeiORCID,Wu XiaoqinORCID

Abstract

Retrieving waveguiding properties of plasmonic metal nanowires (MNWs) through numerical simulations is time- and computational-resource-consuming, especially for those with abrupt geometric features and broken symmetries. Deep learning provides an alternative approach but is challenging to use due to inadequate generalization performance and the requirement of large sets of training data. Here, we overcome these constraints by proposing a transfer learning approach for modeling MNWs under the guidance of physics. We show that the basic knowledge of plasmon modes can first be learned from free-standing circular MNWs with computationally inexpensive data, and then reused to significantly improve performance in predicting waveguiding properties of MNWs with various complex configurations, enabling much smaller errors (~23–61% reduction), less trainable parameters (~42% reduction), and smaller sets of training data (~50–80% reduction) than direct learning. Compared to numerical simulations, our model reduces the computational time by five orders of magnitude. Compared to other non-deep learning methods, such as the circular-area-equivalence approach and the diagonal-circle approximation, our approach enables not only much higher accuracies, but also more comprehensive characterizations, offering an effective and efficient framework to investigate MNWs that may greatly facilitate the design of polaritonic components and devices.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Innovation Support Plan for Returned Overseas Scholars

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3