Solution phase growth and analysis of super-thin zigzag tin selenide nanoribbons

Author:

Davitt Fionán,Rahme Kamil,Raha Sreyan,Garvey Shane,Roldan-Gutierrez Manuel,Singha AchintyaORCID,Chang Shery L Y,Biswas SubhajitORCID,Holmes Justin D

Abstract

Abstract Tin selenide (SnSe), a highly promising layered material, has been garnering particular interest in recent times due to its significant promise for future energy devices. Herein we report a simple solution-phase approach for growing highly crystalline layered SnSe nanoribbons. Polyvinylpyrrolidone (PVP) was used as a templating agent to selectively passivates the (100) and (001) facets of the SnSe nanoribbons resulting in the unique growth of nanoribbons along their b-axis with a defined zigzag edge state along the sidewalls. The SnSe nanoribbons are few layers thick (∼20 layers), with mean widths of ∼40 nm, and achievable length of >1 μm. Nanoribbons could be produced in relatively high quantities (>150 mg) in a single batch experiment. The PVP coating also offers some resistance to oxidation, with the removal of the PVP seen to lead to the formation of a SnSe/SnO x core-shell structure. The use of non-toxic PVP to replace toxic amines that are typically employed for other 1D forms of SnSe is a significant advantage for sustainable and environmentally friendly applications. Heat transport properties of the SnSe nanoribbons, derived from power-dependent Raman spectroscopy, demonstrate the potential of SnSe nanoribbons as thermoelectric material.

Funder

Science Foundation Ireland

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3