Abstract
Abstract
Titanium dioxide nanotubes (TNTs) have attracted increasing interest as implantable materials due to their many desirable properties. However, their blood compatibility remains an issue. In this paper, TNTs of different diameters were modified with two types of zwitterionic polymers, poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA), which were grafted onto the TNTs using ARGET-ATRP (activators regenerated by electron transfer atom transfer radical polymerization) method. Both pSBMA and pCBMA brushes coatings were found to greatly reduce adsorption of bovine serum albumin (BSA) and fibrinogen (Fib) onto the TNTs, showing excellent protein resistance. Moreover, the effects of the surface topography on the amount of protein adsorption were largely suppressed by the polyzwitterion coatings. The conformation of the protein adsorbed to the substrates was analyzed at the molecular level by Fourier-transform infrared reflection spectroscopy (FT-IR), which revealed that the BSA adsorbed on the polyzwitterion-modified TNTs adopted significantly different secondary structures from that on the virgin TNTs, whereas the conformation of the adsorbed Fib remained basically the same. The polyzwitterion-modified TNTs were found to be non-hemolytic, and platelet adhesion and activation was significantly reduced, showing excellent blood compatibility.
Funder
National Natural Science Foundation of China
Chinese Scholarship Council
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献