Polyzwitterionic Coating of Porous Adsorbents for Therapeutic Apheresis

Author:

Semak VladislavORCID,Eichhorn TanjaORCID,Weiss RenéORCID,Weber ViktoriaORCID

Abstract

Adsorbents for whole blood apheresis need to be highly blood compatible to minimize the activation of blood cells on the biomaterial surface. Here, we developed blood-compatible matrices by surface modification with polyzwitterionic polysulfobetainic and polycarboxybetainic coatings. Photoreactive zwitterionic terpolymers were synthesized by free-radical polymerization of zwitterionic, photoreactive, and fluorescent monomers. Upon UV irradiation, the terpolymers were photodeposited and mutually crosslinked on the surface of hydrophobic polystyrene-co-divinylbenzene and hydrophilic polyacrylamide-co-polyacrylate (DALI) beads. Fluorescent microscopy revealed coatings with an average thickness of 5 µm, which were limited to the bead surface. Blood compatibility was assessed based on polymer-induced hemolysis, coagulation parameters, and in vitro tests. The maintenance of the adsorption capacity after coating was studied in human whole blood with cytokines for polystyrene beads (remained capacity 25–67%) and with low-density lipoprotein (remained capacity 80%) for polyacrylate beads. Coating enhanced the blood compatibility of hydrophobic, but not of hydrophilic adsorbents. The most prominent effect was observed on coagulation parameters (e.g., PT, aPTT, TT, and protein C) and neutrophil count. Polycarboxybetaine with a charge spacer of five carbons was the most promising polyzwitterion for the coating of adsorbents for whole blood apheresis.

Funder

country of Lower Austria

Christian Doppler Society

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Reference80 articles.

1. Long-Term Lipoprotein Apheresis in the Treatment of Severe Familial Hypercholesterolemia Refractory to High Intensity Statin Therapy: Three Year Experience at a Lipoprotein Apheresis Center;Cardiol. J.,2019

2. Apheresis for Severe Hypercholesterolaemia and Elevated Lipoprotein(A);Pathology,2019

3. Therapeutic Apheresis for Management of Lp(a) Hyperlipoproteinemia;Curr. Atheroscler. Rep.,2020

4. Extracorporeal Techniques for the Treatment of Critically Ill Patients with Sepsis beyond Conventional Blood Purification Therapy: The Promises and the Pitfalls 11 Medical and Health Sciences 1107 Immunology;Crit. Care,2018

5. Clinical Utility of Extracorporeal Cytokine Hemoadsorption Therapy: A Literature Review;Blood Purif.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3