Modulating the mass sensitivity of graphene resonators via kirigami

Author:

Zhu Pengcheng,Zhang Hao,Zhang Xingbin,Cao Wei,Wang QuanORCID

Abstract

Abstract The unique mechanical properties of graphene make it an excellent candidate for resonators. We have used molecule dynamic to simulate the resonance process of graphene. The kirigami approach was introduced to improve the mass sensitivity of graphene sheets. Three geometric parameters governing the resonant frequency and mass sensitivity of Kirigami graphene NEMS were defined. The simulation results show that the closer the kirigami defect is to the center of the drum graphene, the higher the mass sensitivity of the graphene. The kirigami graphene shows up to about 2.2 times higher mass sensitivity compared to pristine graphene. Simultaneously, the kirigami graphene has a higher out-of-plane amplitude and easy access to nonlinear vibrations, leading to higher mass sensitivity. Besides, the kirigami structure can restrict the diffusion of gold atoms on graphene under high initial velocity or large tension condition. It is evident that a reasonable defect design can improve the sensitivity and stability of graphene for adsorption mass.

Funder

Jiangsu Agriculture Science and Technology Innovation Fund

2020 Science and Technology Boosting Economy Project of National Key Research and Development Program of China

Wenzhou Science & technology Program

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3