Role of a capping layer on the crystalline structure of Sn thin films grown at cryogenic temperatures on InSb substrates

Author:

Chen An-HsiORCID,Dempsey ConnorORCID,Pendharkar MihirORCID,Sharma AmriteshORCID,Zhang BominORCID,Tan SushengORCID,Bellon LudovicORCID,Frolov Sergey MORCID,Palmstrøm Christopher JORCID,Bellet-Amalric EdithORCID,Hocevar MoïraORCID

Abstract

Abstract Metal deposition with cryogenic cooling is a common technique in the condensed matter community for producing ultra-thin epitaxial superconducting layers on semiconductors. However, a significant challenge arises when these films return to room temperature, as they tend to undergo dewetting. This issue can be mitigated by capping the films with an amorphous layer. In this study, we investigate the influence of different in situ fabricated caps on the structural characteristics of Sn thin films deposited at 80 K on InSb substrates. Regardless of the type of capping, we consistently observe that the films remain smooth upon returning to room temperature and exhibit epitaxy on InSb in the cubic Sn (α-Sn) phase. Notably, we identify a correlation between alumina capping using an electron beam evaporator and an increased presence of tetragonal Sn (β-Sn) grains. This suggests that heating from the alumina source may induce a partial phase transition in the Sn layer. The existence of the β-Sn phase induces superconducting behavior of the films by percolation effect. This study highlights the potential for tailoring the structural properties of cryogenic Sn thin films through in situ capping. This development opens avenues for precise control in the production of superconducting Sn films, facilitating their integration into quantum computing platforms.

Funder

Agence Nationale de la Recherche

IRP CNRS

Transatlantic Research Partnership

National Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3