Cu x S nanosheets with controllable morphology and alignment for memristor devices

Author:

Chen Jian BiaoORCID,Zhang Kai,Jiang Zi Jin,Gao Li Ye,Xu Jiang Wen,Chen Jiang TaoORCID,Zhao Yun,Li Yan,Wang Cheng Wei

Abstract

Abstract In electrochemical metallization memristor, the performance of resistive switching (RS) is influenced by the forming and fusing of conductive filaments within the dielectric layer. However, the growth of filaments, mostly, is unpredictable and uncontrollable. For this reason, to optimize ions migration paths in the dielectric layer itself in the Al/Cu x S/Cu structure, uniform Cu x S nanosheets films have been synthesized using anodization for various time spans. And the Al/Cu x S/Cu devices show a low operating voltage of less than 0.3 V and stable RS performance. At the same time, a reversible negative differential resistance (NDR) behavior is also demonstrated. And then, the mechanism of repeatable coexistence of RS effect and NDR phenomenon is investigated exhaustively. Analyses suggest that the combined physical model of space-charge limited conduction mechanism and conductive filaments bias-induced migration of Cu ions within the Cu x S dielectric layer is responsible for the RS operation, meanwhile, a Schottky barrier caused by copper vacancy at the Cu x S/Cu interface is demonstrated to explain the NDR phenomenon. This work will develop a new way to optimize the performance of non-volatile memory with multiple physical attributes in the future.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3