Effect of external electric field on ultraviolet-induced nanoparticle colloid jet machining

Author:

Song XiaozongORCID,Ge Shundong,Niu Yanjiang,Yan Dengwei

Abstract

Abstract Electric field enhanced ultraviolet (UV)-induced nanoparticle colloid jet machining is proposed to improve the material removal efficiency of UV-induced nanoparticle colloid jet machining by applying an external electric field. The influences of TiO2 nanoparticle concentration, applied electric field voltage and pH value for the photocatalytic activity of the polishing slurry was investigated by orthogonal experiments. Terephthalic acid (TPA) was used as a fluorescent molecular probe to reflect the relative concentration of hydroxyl radical groups (·OH) in polishing slurry, which directly affects the material removal rate in the UV-induced nanoparticle colloid jet machining process. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and x-ray photoelectron spectroscopy (XPS) were employed to inspect the interaction variations between the TiO2 nanoparticles and the SiC workpiece surface. The SEM and XPS results exhibit that the external electric field can enhance the adsorption of TiO2 nanoparticles on the SiC workpiece surface, which can create more interfacial reaction active centers in the polishing process. The FT-IR spectra results indicate that TiO2 nanoparticles were chemically bonded to the SiC surface by oxygen-bridging atoms in Ti–O–Si bonds. The results of fixed-point polishing experiment show that due to the enhancement effect of external electric field on the photocatalytic activity of the polishing slurry, the material removal efficiency of electric field enhanced UV-induced nanoparticle colloid jet machining is 15% higher than that of UV-induced nanoparticle colloid jet machining, and is 28% higher than that of pure nanoparticle colloid jet machining. Atomic force microscope micromorphology show that an ultra-smooth SiC workpieces with surface roughness of Rms 0.84 nm (Ra 0.474 nm) has been obtained by electric field enhanced UV-induced nanoparticle colloid jet machining.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3