Magnetic tunnel junction random number generators applied to dynamically tuned probability trees driven by spin orbit torque

Author:

Maicke AndrewORCID,Arzate Jared,Liu Samuel,Kwon JaesukORCID,Smith J DarbyORCID,Aimone James BORCID,Misra Shashank,Schuman CatherineORCID,Cardwell Suma GORCID,Incorvia Jean Anne CORCID

Abstract

Abstract Perpendicular magnetic tunnel junction (pMTJ)-based true-random number generators (RNGs) can consume orders of magnitude less energy per bit than CMOS pseudo-RNGs. Here, we numerically investigate with a macrospin Landau–Lifshitz-Gilbert equation solver the use of pMTJs driven by spin–orbit torque to directly sample numbers from arbitrary probability distributions with the help of a tunable probability tree. The tree operates by dynamically biasing sequences of pMTJ relaxation events, called ‘coinflips’, via an additional applied spin-transfer-torque current. Specifically, using a single, ideal pMTJ device we successfully draw integer samples on the interval [0, 255] from an exponential distribution based on p-value distribution analysis. In order to investigate device-to-device variations, the thermal stability of the pMTJs are varied based on manufactured device data. It is found that while repeatedly using a varied device inhibits ability to recover the probability distribution, the device variations average out when considering the entire set of devices as a ‘bucket’ to agnostically draw random numbers from. Further, it is noted that the device variations most significantly impact the highest level of the probability tree, with diminishing errors at lower levels. The devices are then used to draw both uniformly and exponentially distributed numbers for the Monte Carlo computation of a problem from particle transport, showing excellent data fit with the analytical solution. Finally, the devices are benchmarked against CMOS and memristor RNGs, showing faster bit generation and significantly lower energy use.

Funder

US DOE Office of Science

National Science Foundation

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Device Codesign using Reinforcement Learning;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3