Electrical, thermal and noise properties of platinum-carbon free-standing nanowires designed as nanoscale resistive thermal devices

Author:

Piasecki TomaszORCID,Kwoka KrzysztofORCID,Gacka EwelinaORCID,Kunicki PiotrORCID,Gotszalk TeodorORCID

Abstract

Abstract Platinum-carbon (PtC) composite nanowires were fabricated using focused electron beam induced deposition and postprocessed, and their performance as a nanoscale resistive thermal device (RTD) was evaluated. Nanowires were free-standing and deposited on a dedicated substrate to eliminate the influence of the substrate itself and of the halo effect on the results. The PtC free-standing nanowires were postprocessed to lower their electrical resistance using electron beam irradiation and thermal annealing using Joule heat both separately and combined. Postprocessed PtC free-standing nanowires were characterized to evaluate their noise figure (NF) and thermal coefficients at the temperature range from 30 K to 80 °C. The thermal sensitivity of RTD was lowered with the reduced resistance but simultaneously the NF improved, especially with electron-beam irradiation. The temperature measurement resolution achievable with the PtC free-standing nanowires was 0.1 K in 1 kHz bandwidth.

Funder

Nanometrology of Nottingham cooling effect using operational microelectromechanical systems

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3