Abstract
Abstract
Thermal management is one of the key challenges in nanoelectronic and optoelectronic devices. The development of a van der Waals heterostructure (vdWH) using the vertical positioning of different two-dimensional (2D) materials has recently appeared as a promising way of attaining desirable electrical, optical, and thermal properties. Here, we explore the lateral and flexural thermal conductivity of stanene/2D-SiC vdWH utilizing the reverse non-equilibrium molecular dynamics simulation and transient pump-probe technique. The effects of length, area, coupling strength and temperature on the thermal transport are studied systematically. The projected lateral thermal conductivity of a stanene/2D-SiC hetero-bilayer is found to be 66.67
W
m
−
1
K
−
1
, which is greater than stanene, silicene, germanene, MoSe2 and even higher than some hetero-bilayers, including MoS2/MoSe2 and stanene/silicene. The lateral thermal conductivity increases as the length increases, while it tends to decrease with increasing temperature. The computed flexural interfacial thermal resistance between stanene and 2D-SiC is 3.0622
×
10
−
7
K.m2 W−1, which is close to other 2D hetero-bilayers. The interfacial resistance between stanene and 2D-SiC is reduced by 70.49% and 50.118% as the temperature increases from 100 K to 600 K and the coupling factor increases from
χ
=
0.5
to
χ
=
5
, respectively. In addition, various phonon modes are evaluated to disclose the fundamental mechanisms of thermal transport in the lateral and flexural direction of the hetero-bilayer. These results are important in order to understand the heat transport phenomena of stanene/2D-SiC vdWH, which could be useful for enhancing their promising applications.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献