Crucial role of interfacial interaction in 2D polar SiGe/GeC heterostructures

Author:

Alharbi Safia Abdullah R,Yu MingORCID

Abstract

Abstract The planar charge transfer is a distinctive characteristic of the two-dimensional (2D) polar materials. When such 2D polar materials are involved in vertical heterostructures (VHs), in addition to the van der Waals (vdW) interlayer interaction, the interfacial interaction triggered by the in-plane charge transfer will play a crucial role. To deeply understand such mechanism, we conducted a comprehensive theoretical study focusing on the structural stability and electronic properties of 2D polar VHs built by commensurate SiGe/GeC bilayers with four species ordering patterns (classified as a C-group with patterns I and II and a Ge-group with patterns III and IV, respectively). It was found that the commensurate SiGe/GeC VHs are mainly stabilized by interfacial interactions (including the electrostatic interlayer bonding, the vdW force, as well as the sp 2/sp 3 orbital hybridization), with the Ge-group being the most energetically favorable than the C-group. A net charge redistribution occurs between adjacent layers, which is significant (∼0.23–0.25 e cell−1) in patterns II and IV, but slightly small (∼0.05–0.09 e cell−1) in patterns I and III, respectively, forming spontaneous p–n heterojunctions. Such interlayer charge transfer could also lead to a polarization in the interfacial region, with the electron depletion (accumulation) close to the GeC layer and the electron accumulation (depletion) close to the SiGe layer in the C-group (the Ge-group). This type of interface dipoles could induce a built-in electric field and help to promote photogenerated electrons (holes) migration. Furthermore, a semi-metal nature with a tiny direct band gap at the SiGe layer and a semiconducting nature at the GeC layer indicate that the commensurate SiG/GeC VHs possess a type-I band alignment of heterojunction and have a wide spectrum of light absorption capabilities, indicating its promising applications for enhancing light-matter interaction and interfacial engineering.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3