Introducing ferromagnetism and anisotropic magnetoresistance in monolayer CVD graphene by nitrogen doping

Author:

Singla RobinORCID,Shukla Ambika Shankar,Kottantharayil Anil

Abstract

Abstract We demonstrate a method to dope monolayer chemical vapor deposited (CVD) graphene with nitrogen and make it ferromagnetic. CVD graphene was first functionalized with hydroxyl groups by treating with H2O2 in the presence of UV light and then annealed in ammonia gas to dope it with nitrogen. Magnetization measurements showed a ferromagnetic hysteresis loop at low temperatures with a coercivity of 222 Oe at 2 K. We also investigated the effect of a change in the angle of the applied magnetic field on the anisotropic magnetoresistance effect (AMR) in the doped CVD graphene devices. Graphene shows positive AMR for temperatures from 2 K to 50 K, negative AMR at 100 K and 150 K, and no AMR for temperatures higher than 150 K. A maximum AMR of 0.92% was observed at 2 K for an in-plane magnetic field of 30 kOe. Magnetic force microscopy also confirms the introduction of magnetism in CVD graphene after doping, and electron spin resonance spectroscopy shows resonance when scanned in a magnetic field, which confirms the presence of unpaired electrons in doped graphene. The process introduced in this paper for nitrogen doping of graphene with attendant magnetism could pave the way for the applications of graphene in spintronics and other devices.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3