Abstract
All-solid-state supercapacitors have gained increasing attention as wearable energy storage devices, partially due to their flexible, safe, and lightweight natures. However, their electrochemical performances are largely hampered by the low flexibility and durability of current polyvinyl alcohol (PVA) based electrolytes. Herein, a novel polyvinyl alcohol-polyethyleneimine (PVA-PEI) based, conductive and elastic hydrogel was devised as an all-in-one electrolyte platform for wearable supercapacitor (WSC). For proof-of-concept, we assembled all-solid-state supercapacitors based on boron nitride nanosheets (BNNS) intercalated graphene electrodes and PVA-PEI based gel electrolyte. Furthermore, by varying the electrolyte ions, we observed synergistic effects between the hydrogel and the electrode materials when KOH was used as electrolyte ions, as the Graphene/BNNS@PVA-PEI-KOH WSCs exhibited a significantly improved areal capacitance of 0.35 F/cm2 and a smaller ESR of 6.02 ohm/cm2. Moreover, due to the high flexibility and durability of the PVA-PEI hydrogel electrolyte, the developed WSCs behave excellent flexibility and cycling stability under different bending states and after 5000 cycles. Therefore, the conductive, yet elastic, PVA-PEI hydrogel represents an attractive electrolyte platform for WSC, and the Graphene/BNNS@PVA-PEI-KOH WSCs shows broad potentials in powering wearable electronic devices.
Funder
the National Key R&D project from Minister of Science and Technology, China
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献