Self-rectifying resistance switching memory based on a dynamic p–n junction

Author:

Wu ChangjinORCID,Li Xiaoli,Xu Xiaohong,Lee Bo Wha,Chae Seung Chul,Liu ChunliORCID

Abstract

Abstract Although resistance random access memory (RRAM) is considered as one of the most promising next-generation memories, the sneak-path issue is still challenging for the realization of high-density crossbar memory array. The integration of the rectifying effect with resistance switching has been considered feasible to suppress the sneaking current. Herein, we report a self-rectifying resistance switching (SR-RS) by a newly discovered Li ions migration induced dynamic p–n junction at the Li-doped ZnO and ZnO layer interface. The Au/Li–ZnO/ZnO/Pt structure exhibits a forming-free and stable resistance switching with a high resistance ratio of R OFF/R ON ∼ 104 and a large rectification ratio ∼106. In the Li–ZnO/ZnO bilayer, the electric field drives the dissociation and recombination of the self-compensated L i Z n L i i + complex pairs ( L i Z n : p-type substitutional defect; L i i + : n-type interstitial defect) through the transport of L i i + between the two layers, thereby induces the formation of a dynamic p–n junction. Using this structure as a memory stacking device, the maximum crossbar array size has been calculated to be ∼16 Mbit in the worst-case scenario, which confirms the potential of the proposed device structure for the selection-device free and high-density resistance random access memory applications.

Funder

Ministry of Science, ICT and Future Planning

the Materials, Components & Equipments Research Program funded by the Gyeonggi Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3